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Abstract

A review of the standard model of LNG pool spreading on water, comparing it with the model and experiments on oil pool spread from which the
LNG model is extrapolated, raises questions about the validity of the former as applied to spills from marine tankers. These questions arise from
the difference in fluid density ratios, in the multi-dimensional flow at the pool edge, in the effects of LNG pool boiling at the LNG—water interface,
and in the model and experimental initial conditions compared with the inflow conditions from a marine tanker spill. An alternate supercritical
flow model is proposed that avoids these difficulties; it predicts significant increase in the maximum pool radius compared with the standard model
and is partially corroborated by tests of LNG pool fires on water. Wind driven ocean wave interaction has little effect on either spread model.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling the unconstrained spread of LNG pools on the sur-
face of the sea is a standard component of assessing the safety
consequences of potential spills from LNG tankers traveling near
or at import terminals [1]. Current models are based upon anal-
yses and laboratory experiments of oil pool spreading [2,3]. But
there are substantial differences in physical behavior between oil
and LNG, and in the conditions that might lead to the discharge
of these fuels from their respective marine tankers, that bring into
question the suitability of this accepted model for LNG spills.
It is the purpose of this paper to examine the properties of LNG
spills that suggest that a quite different model should be used,
and to compare the significant differences in LNG pool spread
that would ensue from this alternate model.

In a spreading oil pool of the type modeled by Hoult [3],
the radial spreading speed u is approximately equal to /g A#,
where g is the acceleration of gravity, A the ratio of the density
difference between sea water and oil compared to the density
of sea water, and £ is the thickness of the oil pool. The upper
surface of the oil pool is elevated above that of the sea by Ah,
the “tip of the iceberg”. The submerged portion of the oil layer,
of depth (1 — A)h, displaces the sea water as the pool moves
radially, much like a ship parts the sea as it moves ahead. The
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motion imparted to the sea provides a hindrance to the pool
spread, decelerating the radial pool motion. The ratio of the
emerged to submerged thicknesses, A /(1 — A), is a measure
of the relative vertical displacements of the top and the bottom
of the oil pool. Especially near the front of the pool, the two-
dimensional geometry of the flow is strongly dependent upon
the value of A and the ratio A/(1 — A). For the oil used in
Hoult’s experiments, A = 0.1and A/(1 — A) = 0.11; for LNG
A =0.58 and A/(1 — A) = 1.38. Thus, the flow geometry at
the pool head would be quite different for LNG compared with
oil, whereas the mathematical model makes no such distinction,
allowing any value of A between 0 and 1.

An LNG pool spreading on water boils due to heat transfer
from the sea water substrate. If this vapor formation rate is suf-
ficiently high, bubbles formed will occupy a significant fraction
of the pool volume, reducing its average density and thereby
increasing A above that for the pure liquid. In Section 3.3 we
discuss the generation of bubbles, estimating that it could de-
crease the mean density of the LNG by about a factor of two;
if this were so, then A = 0.8 and A /(1 — A) = 4. This further
increases the contrast with oil spreading.

Finally, and perhaps most important, the initial conditions for
Hoult’s experiments are quite different from those that would ap-
ply for the flow of either oil or LNG from a tanker hold through
a waterline leak onto the sea surface [1]. In the former case, the
pool volume was in hydrostatic equilibrium behind a restraining
fence, only 10% of its volume above water level, with minimal
energy to accelerate the pool fluid to high velocity. In contrast,
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the tanker hold outflow begins with a radial speed much greater
than the amount /gA#h of the standard model; this initial con-
dition should dominate the radial spreading rate. Webber and
Brighton [4] consider such flows, which they regard as appli-
cable to pools spreading on solid ground. For flows on solid
ground, A = 1, not all that different from the value for bubbly
LNG.

We begin by examining the standard model of inertial-gravity
spreading in Section 2, relating the various forms of the global
spreading rate to the analytical form of the shallow layer solution
of Hoult and the relationship of the one dimensional laboratory
experiments to the axisymmetric spreading relations, detailed
in Appendix A. To this is added the effects of pool vaporization
and a finite rate of source inflow. These are the factors that are
included in standard treatments of LNG pool creation, spread,
and disappearance, and form the basis for vapor dispersion and
thermal radiation effects associated with LNG spills on water
[1].

In Section 3 we consider other physical effects that accom-
pany pool spread, but which are not explicitly included in the
standard model. These include energy dissipation by gravity
wave generation, flow at the pool front that generates a separated
flow in the sea water, and the generation of a vapor fraction in
an LNG pool caused by heating from below.

In Section 4 we describe an alternate model of LNG pool
spread, called supercritical pool spread, that addresses the trou-
blesome issues sketched above. In this model, the spread on
water is quite similar to that on land, converting the gravita-
tional energy of the stored LNG entirely into kinetic energy of
spreading motion. Compared with the standard model, it pre-
dicts greater maximum pool radii and shorter evaporation times,
largely independent of any of the spread parameters. We also
compare this model with measurements of pool spread made
during burning LNG spills on water.

We end, in Section 5, with an analysis of the effects of wind
driven ocean waves on slowing or stopping the spreading of a
pool in the windward direction, showing that this effect is quite
small for LNG spills under practical circumstances.

2. Standard models

2.1. Inertial-gravity spread of nonevaporating oil pools on
calm water

Using order of magnitude arguments, Fay and Hoult [2] es-
timated that the radius R of a circular oil pool of volume V
suddenly released upon the surface of the sea would increase
with time as:

R~ (gAV)/4:1/2 (D

where

A= @ 2)
W

pc and py, being the densities of the oil and sea water, and where
g is the acceleration of gravity. The speed U of the front of the
pool can also be expressed [1] in terms of the pool thickness

(~V/R2) as:
drR  [gAV\'/?
V=T (m) ®)

Both (1) and (3) are equivalent expressions for the spreading
process; the former is the integral of the latter.

Hoult [3] developed relations of the type (1) and (3) by find-
ing self-similar solutions to the shallow layer inviscid flow equa-
tions, (A.3) and (A.4) of Appendix A, expressible by:

R = nm(gAV)/41/2 4)
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where 1y, is a dimensionless parameter whose value was in-
ferred from laboratory measurements of spreading in a one-
dimensional channel. ! As explained in Appendix A, its value
is 1.26.

An alternate form of (5) is used by Fay [1]:

dR gAV\ /2
- 7R?

(6)

in which 8 = /7(n%,)/2 = 1.41.

Webber and Brighton [4,5] utilize a different procedure,
based upon self-similar solutions to the shallow layer inviscid
flow equations, for developing a spreading relation for circular
pools. Evaluating Euler’s Eq. (A.3) at the pool radius R, they
obtain

dUu 4 —1) gAV

o) (3
t b4 R

Their shape parameter s = 1 4+ 7(y /2)4 = 1.50. When com-

bined with (3), (7) can be integrated in the form of (5).

The Hoult parameter 7y, is related to the Froude number Fr
of the pool front edge by (A.15)

U ( 4 1\ 2
Fr= = +> ®)
JeAH 3 4

where H is the thickness of the pool at the front edge. For the
Hoult solution, Fr = 1.16.

The distributions of radial velocity u and thickness 4 within
the pool, as a functions of the radius r, are given by (A.5), (A.6),
and (A.12). The velocity u increases linearly with r, while the
thickness & reaches a maximum at r = R.

2.2. Evaporating pools

For cryogenic liquids, such as liquefied natural gas (LNG),
pool spreading is accompanied by evaporation of the pool fluid.
The pool is heated from below by the much warmer water, and in
addition may be heated from above if the pool vapor is burning
as a pool fire. For fuels with boiling points above ambient tem-
perature, vaporization is significant only if the pool is burning. If
the total evaporation rate is expressed by a regression velocity w,

! In this section, 5y, is identical to 7m,1 of Appendix A.
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then the pool volume V) {t} will decrease with time according to

dv, 2
Fralie w(wR”) C))
assuming that w is a constant, independent of r and .

Itis commonly assumed that the instantaneous spreading rate
has the same form (6) for an evaporating pool of variable volume
Vplt} as it does for a fixed volume V; Egs. (6) and (9) apply
simultaneously for the pool spreading and evaporation. There is
no theoretical justification for this assumption, since evaporation
destroys the self-similar development of the flow variables u and
h of Appendix A, on which (6) is based.

For an instantaneous spill, where the pool volume V,, equals
the spill volume Vat = 0, (6) with (9) can be integrated simul-
taneously [1] to the point where V,, = 0, for which the maximum
pool radius Ry, is reached at the evaporation time #,, where

1/8 3\ 1/8 3\ 1/8

64p° AV AV

Rm=(ﬂ3> (g . ) — 0.906 (g . ) (10)
O w w

1/2 1/4 1/4
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where I"(x) is the gamma function of argument x, and where the
coefficients in (10) and (11) have been evaluated numerically
for g = 1.41.2 Note that Riltv is independent of the spreading
parameter f.

2.3. Source outflow

The standard model equations shown above are applicable to
pools formed very rapidly on the sea surface at early times, long
after which the spreading proceeds independent of this initial
inflow. For modeling of spills from LNG tankers, the outflow
is assumed to be generated by quasi-steady gravity flow from
a prismatic storage tank of volume V and height ¢y above the
sea surface, issuing as a horizontal jet onto the sea surface [1].
Initially, this jet velocity u is 1/2gZo, but as the height ¢ of the
remaining fluid in the tank declines with time, u = /2gZ ap-
proaches zero when the tank is empty. It can be shown that the
average value of u? for the outflow is

so that the average kinetic energy of the outflow fluid is equal
to the average potential energy of the fluid in the tank before
the outflow began. Thus, energy is conserved in this outflow
process. The outflow process ceases at a discharge time #4

2 \%
_ 13
1 g%o (Ah> )

where Ay, is the effective flow area through which the discharge
occurs. If 1y < ty, then the maximum pool radius Ry, is that

2 Raj and Kalelkar [6] report identical relationships for the last terms on the
right of (10) and (11), but with numerical coefficients of 1.0 and 0.674, respec-
tively.
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Fig. 1. A sketch of the cross-section of a pool in hydrostatic balance within a
fence.
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of the instantaneous spill (10). For longer discharge times, the
value of Ry, is a more complex function of the flow parameters

(1].
3. Other physical effects
3.1. Hydrostatic energies and energy dissipation

A circular pool of oil will be in complete static equilibrium,
both vertical and horizontal, if it is contained within a fence of
radius R whose circumferential stress produces an inward radial
force F per unit of circumference that allows the fluid pool to
float on the sea as if it were a rigid body. As shown in Fig. 1,
the oil pool of thickness H floats at a depth H' below the sea
surface, where

pcH = pyH’ (14)

so that the pressure at the base of the pool equals that of the
surrounding sea. The height of the upper surface of the pool
above the sea surface, H — H', is

Pe

H—-H =H-"SH=AH (15)
Pw

while the depth of the submerged layer, H', is

H =(1-2M)H (16)

The inward radial force F needed to balance the net outward
pressure force on the fence is>

_ l 2 1 AV 1 2
F= 2pch - 2,owg(H) = 2,ong(l — A)H (17)

Now consider the mechanical work required to form this pool
of fixed volume wR?H, starting from a very thin layer on the
sea surface of very large radius, while the pool remains in hy-
drostatic equilibrium with the surrounding environment, the sea.
This work defines the free energy FE of the pool

R 2
AH AH
FE:/ 27rF dr=(pot R*H) (82> — 7R (p‘:gz>
oo

(18)
where we have invoked the conservation of pool volume 7R> H

in evaluating the integral. The free energy per unit pool mass is
gAH/2 while its value per unit pool surface area is p.gAH? /2.

3 We ignore here the difference in interfacial tensions on either side of the
fence.
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The free energy is distinct from the gravitational potential
energy (PE). The latter is defined by the vertical position z of
the mass center of the pool in the earth’s gravitational field,

PE=mJﬁHg¢=@J#HM<;—A>H (19)

where z = 0 at the sea surface.

Note the significant difference between oil pools for which
A < 1/2 and LNG pools for which A > 1/2. As the pool
spreads, it rises toward the sea surface for the former whereas
it falls for the latter. In both cases the free energy decreases,
as it should when F approaches 0, the condition of stable static
equilibrium in the absence of the restraining force F.

In the absence of the restraining effect of the fence, the pool
expands radially, establishing a dynamical equilibrium in the
radial direction. The kinetic energy per unit mass of pool fluid
is proportional to U? ~ gA H and hence proportional to the free
energy. Thus, the total energy E, the sum of the kinetic and
free energies, declines with increasing radius and time. In this
dynamic process there are three invariants of the motion:

Ri™V2 ~ (gAV)1/4 (20)
Ht ~ (V/gA)!/? 21
Et ~ pe(gA)'/?v3/? (22)

Although this is an inviscid flow without viscous dissipation,
the total energy E is not conserved. Instead, the pool energy is
carried away by gravity waves spreading radially across the sea
surface, these waves being generated by the change in shape, but
not in volume, of the displaced water as the pool spreads. The
wave generation is similar to that of a pebble dropped gently
onto the surface of a still pond.

We may estimate the amplitude n of these gravity wave by
setting the energy flux in the wave system radiated by the circular
pool equal to the rate of energy dissipation dE/dt. For gravity
waves, the energy density of the wave is ~py,gn? and the energy
flux per unit pool perimeter is the energy density times the phase
velocity ~ (gR)!/?; the wave amplitude 7 scales as

1/16

AV

mll/S ~1 - A)l/z (11> (23)
g

Alternatively, we may may compare n with AH:

” v o\ /16
AR V(1 —A)A (g3t6> (24)
Note that the extremely small dependence of n/AH on V in
(24). Also, there is no wave energy radiated when A — 0 or 1.
In the former limit, there would be no motion, while in the latter
there would be no disturbance of the sea substrate. In both limits
the force F' — 0. This brings into question the suitability of the
standard model for modeling the spreading of pools for which
1 — A is small, as it may be for LNG.

3.2. Flow at the front

The flow conditions at the front of the expanding pool deserve
some elaboration. The inertial-gravity spreading model assumes
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Fig. 2. The control volume defining a momentum balance on the flow past the
front of a pool.

that the pressure field is hydrostatic, although that is surely not
true in the vicinity of the front. Yet at some distance from the
front the hydrostatic assumption must hold, which has impli-
cations for the flow relative to the front. To examine this more
closely, consider the quasi-steady flow of substrate fluid (water)
with respect to the front, as shown in Fig. 2. In the absence of
flow, the pool fluid must be restrained by a fence of height H
to maintain static equilibrium. The upper surface of the pool is
elevated above that of the water by an amount AH, while its
lower surface is submerged a distance (1 — A)H. Under hydro-
static conditions, a restraining force F, given in (17), is required
to hold the fence in place; under dynamic flow conditions, this
force is provided by a change in momentum of the oncoming
flow.

Consider the rectangular contour shown in Fig. 2. If s is the
distance along this contour, then the horizontal force balance
requires

fpds: F (25)

where F is given by (17). Now consider the case of a uniform
flow of speed U through this volume. This flow produces a drag
force on the pool front equal to F, being balanced by a reduction
in the horizontal momentum flux of the fluid flowing through
the contour,

j{pwu(U—u)ds = fpds

H2
pwU?0 = pygA(l — A) (2) (26)

0 1
(1—AH  2(Fr)?

where the momentum thickness 6 of the wake fluid is

e;/%(l_%)ds @7)

Thus, there is a layer of water, of thickness about 6, moving
with a speed U in the direction of r, which is a wake region
behind the pool front. The pool leading edge, as can be seen in
Fig. 5 of Hoult [3], is wedge-shaped and thicker than the pool
depth (H) behind it. The water flow around this front separates,
as it would around a blunt shape, leaving behind a separated
wake layer that moves with the front speed. This wake can grow
in thickness with distance behind the front, but its momentum
flux is fixed at the value given in (26). Because Fr ~1, the wake
thickness 6 is about half of the depth (1 — A)H of the submerged
portion of the pool front.
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If one considers the pool as a rigid body of depth (1 — A)H
moving through the water, experiencing a drag force F, then its
drag coefficient Cp would be

F 1 26

T owUX1 — MH2  (Fr?: - (- A)H 28)

The wake layer beneath the spreading pool has about the
same volume and speed as the pool, and hence comparable ki-
netic energy. Thus, the kinetic energy in this flow is about double
the value calculated for the pool itself, and the energy dissipa-
tion described in Section 3 is a consequence of gravity waves
generated by the motion of both oil pool and wake flows.

Cp

3.3. Bubble flow in vaporizing LNG pools

LNG pools spreading on the sea surface are heated from be-
low by the much warmer sea water. Bubbles form at the pool-sea
interface, rising to the pool surface at a speed V4, that carries the
LNG vapor upward at the mass rate of evaporation 7. This flow
of bubbles reduces the average value of the pool density pp in
proportion to the bubble fraction 7 of the bubbles in the pool:

pp =1 =mpc (29)

Consider the upward velocity of a vapor bubble of diameter
d. Equating the buoyant force on the bubble to its aerodynamic
drag, we find

pVid? ~ ppgd?
Vi, ~ /gd

But the bubble diameter is determined by the balance between
the surface tension force and the buoyant force on the bubble,
giving

= og 14
d~/—: Vo ~ <> (31)
Pc8 Pc

The bubble fraction ; then becomes the ratio of the superficial
vapor velocity, 71/ py, to the bubble velocity V,

oy gl

Vo py(og)t/
Evaluated from (32) for an LNG pool, 7 is on the order of one.
But the maximum value of the void fraction for a bubbly flow
would be about 1/2, near the value of closely packed spherical
bubbles in a continuous liquid phase. For LNG, the correspond-
ing value of A would be about 0.8; for such a pool, about 80%
of the pool volume would lie above the sea surface level.

(30)

(32

3.4. Viscous effects

In the experiments of Hoult [3], it was shown that oil pool
spread is eventually slowed by the effects of viscous drag on the
pool caused by the sea water substrate. But a boiling LNG pool
is insulated from the sea substrate by a thin film of LNG vapor of
much lower viscosity than that of water or LNG. The spread of
an evaporating LNG pool can be regarded as essentially inviscid
flow, as assumed in the standard model. This nearly frictionless

motion is related to the Liedenfrost effect, where small droplets
of liquid skitter about on a solid surface heated to well above
the liquid boiling point.

4. Supercritical pool spread

The pool spread model described in Sections (2) and (3) above
is one for which the local Froude number Fr = u/./gAh is less
than unity, a subcritical flow. The ratio of kinetic to potential en-
ergy in such flows, which is proportional to (Fr)?, is conserved,
whereas the sum of potential and kinetic energies declines in-
versely with time (22). In section (3.1) this loss of energy was
explained as the source of gravity waves that radiate energy
ahead of the expanding pool, as in (23). The initial free energy
per unit mass of this pool is of order gAV!/3, assuming that
the initial spill volume is compact (H ~ R) and floating with a
volume fraction A above the level of the sea surface.

These are the conditions of Hoult’s experiments with oil pools
[3], where A ~0.1 and about 90% of the oil is submerged below
sea level. Hoult comments that this model may not be applicable
if A isnot much less than unity. Nevertheless, the standard model
is used for LNG, where A is 0.58, and might even be ~0.8
if bubble formation is taken into account (Section (3.3)). It is
questionable whether the flow near the front, illustrated in Fig.
2, is realistic for such large values of A.

There is an additional reason to question the applicability
of the Hoult standard model to an LNG pool formed by the
discharge from a tanker hold [1], as explained in Section (2.3).
The average kinetic energy per unit mass of the tank outflow
is g¢o/2, which is larger than the initial kinetic energy of the
model by a factor of 1/A. There would have to be a mechanism
for dissipating this energy right at the source.

Webber and Brighton [5] have developed alternate spread
models that they say apply to the spread of liquid pools on
solid surfaces. These models are characterized by an asymptotic
spreading law of the form

R=Ut (33)

where U is a constant, related to the initial energy of the source
inflow. In these models, the kinetic energy and potential ener-
gies of the pool asymptotically approach a constant and zero,
respectively, and the asymptotic Froude number is thus infinite.
This model may be considered to be the limiting case of a pool
fluid for which (1 — A) « 1, such as water spreading on liquid
mercury or even bubbly LNG on sea water.
We select as a model the Webber and Brighton [5] solution

r r
u=U(%)=" (34)
= v = v (35
aR?2  w(Ur)?
with the stipulation that
U=+/2¢g% (36)

where o is the initial height above the sea surface of the fluid
in the tanker hold. Thus, the pool front speed is that of the first
element of tanker hold fluid to emerge at the beginning of the
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outflow, and it retains its speed along its trajectory R = Ut. The
same is true along each fluid particle trajectory r = ut, where u
is the tank outflow velocity /2g¢ at the time when the storage
volume has shrunk to {V/¢p. This general relationship is

=== 37)

As a consequence, the pool kinetic energy is equal to the
initial potential energy of the tanker hold, and is a constant of
the flow field.* It is essentially the pool spread across a solid
horizontal surface, or even one where a local surface elevation
above the horizontal is much smaller than U?/g. Because of the
supercritical flow, it is not necessary for the pool volume to be
in hydrostatic equilibrium in the vertical direction as assumed
in the standard model.

The distinction between the supercritical and the standard
(subcritical) spreading models may be illustrated by consider-
ing the different spreading rates of explosive gases resulting
from setting off an explosion in space and the atmosphere, re-
spectively. In space, the chemical energy E of an explosive of
mass M is converted to the kinetic energy of the product gases,
imparting a fixed velocity U and a spreading radius R,

U~y/—: R~ [y/=]¢ (38)
M M

On the other hand, in the atmosphere the spreading gas bubble
must exert a pressure p, U on the atmospheric air it pushes ahead
of it, leading to

Et2 1/5
(%)

These different expansion behaviors mirror those of the su-
percritical and standard pool spreading models (33), (34) and
(4), (5), respectively; a constant speed and energy (38) and a de-
creasing speed and energy (39). Note that the former is not the
limit of the latter as p, — 0, the equivalent of A — 1. In super-
critical spreading, the pool slides over the substrate fluid without
creating significant motion in it, much as a planing speedboat
creates a smaller surface wave pattern than does a slow moving
boat that displaces the water as it moves.

The supercritical flow solution (34) and (35) is not entirely
one for which u > gAh because u — 0 near r = 0, but the
flow is supercritical over the outer portion of the flow field.
More importantly, this solution is an exact solution of Euler’s
equation along a radial streamline

ou n u A
MM
o U T8

oh

5 =0 (40)

4 The solution (34)-(36) is analogous to the “big bang” model of the universe,
where cosmic mass moves at a speed u proportional to the distance from the
observer r with the outermost distance R moving at the speed of light U. This
expansion was set in motion at t = 0.

Even more important for this case, because oh/or = 0, Eu-
ler’s equation takes the form

Du ou ou

= =0 41
Dt at “4D

u—=

ar
where Du /Dt is the acceleration of a fluid particle along a radial
streamline, which is identically zero. Thus, fluid particles move
at a fixed radial speed u, undergoing no acceleration caused by
the hydrostatic pressure distribution within the layer, and g is not
aparameter of the solution. But if the flow is locally supercritical,
then

o Au/2) oh

— = A— 42
! or or > 8 ar “2)
and (41) will describe the flow field, even if 0k /0r is not exactly
zero. Thus, we take (41) as defining the motion when the flow
is superecritical.

4.1. Supercritical spread with evaporation

We may now combine spreading with evaporation. The rate
of pool volume reduction is

dv,
dt

so that the pool volume V}, is reduced to zero at the evaporation
time ty, and at which time the maximum radius Ry, is achieved,
where

= —wmR?) = —rwU*#* (43)

3y \!/3
= 44
w (anz) “4)
3uv\'/3
o= () o
aTw

These values are different from those of the standard (subcrit-
ical) model, (10) and (11). To evaluate this difference, we find
the ratio of the values for supercritical and standard spreading:

1/24

super (Rn) o/‘gV]/3

—— =109 —— =2.51 46
std(Rm) ( Adw? (46)

1/12

super(tm) Adw?

—— =196 ——= =0.159 47
std(tm) <oz4gV1/3 “7)

where o = U?/gV!/? and the last term on the right has been
evaluated numerically for typical LNG values of « =1,V =
10*m3, w =5 x 10~* m/s, and A = 0.6. Note the insensitivity
of these ratios to the values of the parameters A, w, V, and «.
Whatis striking is that the supercritical spreading results in much
larger R, and shorter .

As Webber and Brighton [4] note, a spill with vaporization
will not conform exactly to the self-similar solution (34) and
(35). But evaporation has no effect on Euler’s equation (41)
and the particle paths for the evaporating spill will be given by
r = ut, as in (34). The corresponding particle paths are sketched
in the r, f plane in Fig. 3(a).



J.A. Fay / Journal of Hazardous Materials 140 (2007) 541-551 547

(a) r

| /

1 o /

[ /

1= /, )

t
d Vi ‘. s
N ’
AN ’
{ / 4
VAR s
’ P
/ 7’
T 4 VRN
d // &
'd
Vg
r'd
7’
e
s

(b) r

Fig. 3. Particle paths for a supercritical pool spread for (a) an instantaneous spill and (b) a gradual spill of duration #4. U is the initial spreading speed and 7 the

fraction #/14.

4.1.1. Supercritical spread with finite discharge time

As for the standard model (see Section (2.3)), the evaporation
time and maximum radius, (44) and (45), may depend on the
discharge time #q of the fluid from the cargo tank, defined in
(13). Whenever the discharge time is less than the evaporation
time of (44) the maximum pool radius is given by (45). This may
be termed a “rapid spill”. On the other hand when #4 > t,, the
maximum radius is less than that of (45), which will be termed
a “slow spill”.

To examine the characteristics of slow spills, we begin by
noting that the rate of increase of pool volume V;, is the difference
between the inflow volume rate and the evaporation rate:

av, 2V 2V
—P T —wRr =200 — 3% <1
dr td td

(48)

where the first term on the right is the gravity inflow from a
storage vessel of volume V, initial speed U, and duration #4 [1],
and the second is the evaporation from the pool of radius R = Uz,

and where
1/3
t U f
r=ly = (2P} K4 (49)
td k1% tv

During inflow (¢ < t4) , the inflow rate, and inflow speed
u{0, t}, decline linearly in the interval 0 < ¢ < #4 so that

u{0,1) = U(l — 1) (50)

We may regard t as a time progress variable measuring the
fraction of the discharge period. The particle path during this
period is

r=U0—-1)t—1t3); t>Tl4 @28

These particle paths are sketched in Fig. 3(b).
Integrating (48), we find the pool volume V,,
VP 3.3
— =12 —-1)—Yy’1;
vy = T2-D-vy
where the restriction on « ensures that V}, > 0 over the discharge
period 0 <t < 14.

a>1l;t<1 (52)

Early in the discharge period, the pool radius grows at the
rate R = Ut; later on the pool radius will decrease with time
as a quasi-steady pool reaches equilibrium with its decreasing
inflow. Here the pool equilibrium radius Req{t} is

A% 1/2
Regft} = (u)rrtd(l - T)) ;=<1 (53)

But for such a flow, there needs to be a volume Veq of pool
fluid that permits the inflow to provide the evaporation flux.
To determine this volume, consider the radial distribution of
outward volume flux Q{r, t}, of constant speed u, that satisfies

mass conservation
d dQ2nruh
o _ d@rrub) -, (54)
dr dr

Integrating, we find the volume flux Q{r, t} and pool volume
Veq

O{r. 1} = mw(Re, — r?) (55)
R 2mwR3 2 /2v\32 /1 172
Veq:/ 2nrhdr = a4 _ - (ZZ i
0 3u 3U \ y Tw
(56)

‘We now turn to the determination of the maximum radius of
a slow spill, R;, one for which this size is achieved at a time #
less than the spill duration. As in the case of standard spills in
Section 2.3, we assume that this condition is reached when the
pool volume V,, of (52) is zero, resulting in expressions for the
time t; and maximum radius Ry = Uty

V14+8y3 —1
g:<%j>m (57)

R__<M1+&ﬁ—1
oo (VIS

2 ) Rm; y=zltaz=t (58)

where t, and Ry, are given by (44) and (45). For extremely slow
spills, where y > 1, Rs becomes

2v \ /2
&zwfm@(> =3Reql0); ta>1t  (59)
wirty
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Thus, the pool radius Rg at which the pool volume has reached
zero is larger by a factor +/3 than the equilibrium value at which
the inflow and evaporation rates at time f¢ are equal; the pool
radius contracts quickly to the equilibrium value as the pool front
disappears by evaporation. This characteristic is also present in
the standard model [1], but there the overshoot factor is V2.
In both cases the overshoot is related to the assumption that
the transition to an equilibrium condition occurs when the pool
volume has shrunk to zero.>

4.1.2. Comparison with China lake experiments

Neither laboratory nor field experiments that correspond to
gravity flow from a cryogenic fluid storage tank onto the surface
of water have been conducted. However, field tests of LNG spills
on water accompanied by burning were conducted at China Lake
[7]. In these tests, volumes of the order of 3—6 m> were spilled at
a fixed volume flow rate in a period of 30-250's, during which a
steady state pool fire was established. These tests replicated the
startup process of a gravity-fed spill of long duration (¢; < tq).
We compare the results of two of these tests, 5 and 12, with the
supercritical model of this section and the standard model of
Section 2.

The experiments involved a discharge at a fixed volume flow
rate for the full duration of the discharge. At or near the start,
the vapor pool was ignited and a pool fire was established for
the remaining duration of the discharge. After an initial period
of spreading, a pool fire of fixed radius Req persisted until the
outflow ceased. The recorded history of pool radius R{t} was
compared with the supercritical and standard model values, the
only parameters needed for this comparison being Req and U,
the discharge velocity.

These comparisons are presented in Fig. 4, in terms of a
dimensionless radius R{t}/Req versus a dimensionless time
Ut/ Req. In these units, the supercritical model (solid line) shows
a linear rise of R/ Req to a value of /3, at a time Uts/Req = V3
(see (59)), after which a steady state radius of Req is estab-
lished. The standard model (dotted line), expressed in the same
coordinates,® rises to a value of /2 at a time Uts/Req = 30,
defining the time 7, when the steady plume radius commences.
The measurements of tests 5 and 12 are shown as dashed and
dot-dashed lines, respectively. Test 12 has a 25% lower U and a
9% higher Req than test 5, yet the initial spreading is noticeably
different. At the very beginning, R increases linearly with ¢, but
at a speed that is about (2/3)U. In test 5, R overshoots Req by
50%, while in test 12 it undershoots by the same percentage, as a
steady state is approached. The supercritical time 7, for a steady
state pool to be formed (see (59)) is 2.1 and 3.0s, respectively,
for these tests. It seems unlikely that the inflow started instan-
taneously with the value U, as the supercritical model assumes,

3 Given the requirement that the equilibrium pool has a volume given by (56),
it would be more accurate to require the pool volume at maximum radius Ry have
this value rather than zero. If this requirement is satisfied, then Rs/Req = 1.48,
only slightly less than +/3, as given in (59), for the case of y > 1.

6 This calculation is based upon the analysis of Fay [1]. In the dimensionless
variables of Fig. 4, it includes the cube root of a dimensionless Froude number

U/+/gAAn/Req, where Ay is the flow area of the inflow stream.

2~

Ut/Ry

Fig.4. A comparison of China Lake experiments with LNG pool spread models.
The ordinate is the dimensionless pool radius and the abscissa is the dimension-
less time. The solid line and the dotted line are the supercritical and standard
models, respectively. The dashed and dot-dashed lines are tests 5 and 12. Di-
mensionless times to reach a steady state are /3 and 30 for the supercritical and
standard models.

but ramped up to this value over the first few seconds, slowing
the early spreading and delaying the time to a steady state by a
factor of 2—4. On the other hand, the standard model underpre-
dicts the spreading rate, especially for test 5, and substantially
overpredicts the time to establish a steady pool fire. But it is
certainly true that the measured spreading in both these tests lie
within the limits of the two models.

5. Effects of ocean waves

A recent report [8] addressed the problem of the effect of
ocean waves on the spreading of LNG pools. Based upon the
model of Webber and Brighton [5] for flow over uneven ground,
the author proposed that a spreading pool would be stopped when
the pool thickness & was less than the wave height, because
the pool fluid would be trapped in the wave trough. But this
model is not applicable to a moving wave surface. If the pool
were not spreading, the pool fluid would not accumulate in the
wave trough, which moves with the phase velocity of the wave.
Instead, the pool fluid moves in the same oscillatory pattern as
the water on the wave surface.

Nevertheless, in the presence of ocean waves of height com-
parable to or greater than the thickness of the pool, the spread-
ing rate could be lessened or even reversed. In this section we
consider a model for the effects of impingement of a train of
ocean waves directed at a spreading pool. The partial reflection
of the waves from the pool front supplies a force that would slow
down the spreading; we determine the ratio of wave height to
pool thickness that would bring the spreading to a halt.

5.1. Energy and momentum fluxes in ocean gravity waves

A deep water gravity wave’ on the ocean surface possesses a
surface energy density E, i.e., energy per unit surface area, that
depends only upon the wave height H [9],

_ pwgH?
8

E (60)

7 One where the sea depth is much greater than the wave length.
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where H is the vertical distance between the wave crest and
trough. The speed of propagation of the wave, called the phase
velocity Vi, is a function of the wave length A or cyclic frequency
£, which are related:

_ 8h 8 g

o ﬁ; (61)

Such a wave has a horizontal vector momentum density P,
momentum per unit surface area, which equals the energy den-
sity divided by the phase velocity:

2
P=— <E>i= (W)l (62)
Vo 4

where i is the unit vector in the (horizontal) direction of propa-
gation of the wave.

A gravity wave is dispersive since its phase velocity depends
upon the wave frequency or wave length. When considering
the propagation of energy or momentum in the direction of the
wave, the speed of movement of energy or momentum, that is,
the energy or momentum flux past a vertical plane parallel to the
wave crest, is the group velocity Vy:

Y A 1)
%:aum_z

(63)

the phase velocity being one-half of the group velocity for deep
water gravity waves. As a consequence, the energy flux E'Vy and
momentum flux PV, become®

gy, — PweH?
£ 32nf

2
(i (- () e

5.2. Limiting pool spread to windward

(64)

Vessels in a seaway interact with an oncoming train of waves.
A large, deep draft vessel broadside to the waves will reflect
them, feeling a force per unit length F,, that is twice the mo-
mentum flux PVg,

pwgH 2

8

On the other hand, a vessel of small draft d will reflect only
a portion of the wave momentum flux, depending upon the ratio
of d to the average depth A /47 of the energy and momentum in
the wave. The force from this partial reflection would then be

72 72
() ()-(0 ) @
A 8 A 2

A floating oil pool is not rigid like a vessel, but will still reflect
oncoming waves. Assuming that the effective depthd = Ah and

F=2PV, =

(66)

8 These relations are modified in water of depth less than A/27. As the draft
of LNG tankers is about 15 m, these relations are applicable to wave lengths less
than about 90 m.

the force that is required to prevent spreading is that of (17),
spreading will cease when / reaches a critical value, A, where

pugA(l — MR <Ah) (npwgf#)

2 A 2

(1—2h. =H
H X

Thus, the relative thickness h./H is of the order of the ratio
of wave height to wave length. But the latter is seldom greater
than 1/10 because wave breaking limits this ratio. For a given
site, monitoring provides mean values for H and A which can be
used in (68). For waves in the open sea driven by the wind, the
average value of H/A is about 1072 [9-11].

(68)

6. Conclusions

A review of the standard mathematical model of spreading
of LNG spills from marine tankers onto sea water raises signifi-
cant questions as to whether it is an appropriate extrapolation of
the mathematical model and experiments for oil spills that form
the basis for LNG spill analysis. The factors that support this
questioning include the differences in density ratio A, the sig-
nificance of A on the multi-dimensional flow at the pool leading
edge, the influence of inflow conditions for a marine tanker spill
as contrasted with the initial conditions of the standard model
and its laboratory confirmation, and the significant increase in A
caused by boiling of LNG at the water—LNG interface. An alter-
nate inviscid supercritical flow model is advanced that is insen-
sitive to all these factors. Compared with the standard model, it
predicts a significantly greater maximum pool radius and briefer
evaporation time, both important changes in the source term for
vapor cloud modeling and the size of pool fires. Field tests of
LNG unconstrained pool fires on water lend support to this al-
ternative model.

An examination of the effects of ocean wave interaction on
pool spread shows only small or negligible effect for either the
standard or supercritical model.

Appendix A. Spread of nonevaporating pools on calm
water

A.l. Inertial-gravity spread

Hoult [3] developed a self-similar solution for inertial-gravity
spread in terms of a dimensionless similarity variable 7, a func-
tion of the independent variables, time ¢ and radial distance r
from the origin of the spill,

= r(g/L2+”t2)_]/(3+n) (A.1)

where

gEgAEg<A:ﬂ%>, (A2)
W

L**" is the pool “volume”, and py, and p. are the densities
of water and pool liquid, respectively. In (A.1), n is the index
distinguishing one dimensional (n = 0) from axially symmetric
(n = 1) pools.
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The similarity solution to the radial Euler and mass conser-
vation equations,

8u+ 8u+ , Oh 0
ou B, 0h
a T ar T8

oh n 1 o(r"uh)
o m ar

(A3)

0 (A4)

where u and h are the pool radial velocity and vertical thickness,
takes the form

= ()
U= -
3+n \t
L2+n
h= (r”") Gnin}
satisfying the condition that u = 0 at the origin.’
Denoting the position, velocity and height of the spreading

front of the pool by R, {t}, U,{t}, and H,{t}, respectively, they
are given by

(A5)

(A.6)

R, = nm,n(g/L2+n t2)]/(3+n)

1/2
dR, 2 (R, 2 (ppngrrn\ Y
Un = = —_— = 2
dt 3+n\ ¢t 3+n R)+7

(A.8)

(A7)

L2+n
H, = () Gn{nm,n} (A.9)

1
Rn+n

where 71, , is a numerical constant that can be measured in
experiments confirming the scaling law (A.7).10

For a nonevaporating pool, the volume L>*" is a constant of
the motion, so that

R
/ Qar)' hdr = L**" (A.10)
0

which can be expressed as an integral condition on G, {n},
Nmn G
/ —=dn = Qm)™"
0 n

The function G, {n} that satisfies this condition and (A.5) and
(A.6) is

(A.11)

G, l+n ,

_ l+n  (1+n)’ ,
T Grnl

Qo Gt np

(A.12)

While the empirical constant 1, , provides a detailed de-
scription of the thickness distribution /# within the pool, it does
not explain the physics of the flow at the pool front. It has been

9 Hoult [3] mistakenly expressed the factor2/(3 + n)in (A.5)as (2 —n)/(3 +
n), so that his solutions for n = 1 are incorrect, as noted by Huppert and Simpson
[12].

10 Hoult [3] found Nm,0 to be 1.57.

argued that the front speed U should be proportional to v/g'H,
the proportionality constant being the front Froude number Fr,

U
v§'H
Various values for Fr have been proposed for intrusive bot-

tom currents, but Hoult [3] proposed that it can be determined
empirically because it is related to ny, by (A.6) and (A.7),

4 3+n
= —Zm’n (A.14)
G +n)=G{nm,n)

It follows from (A.12) that Fr and 7, , are related by

Fr =

(A.13)

Fr

4 A+mG+n?®  2(1+n)

Because Fris dependent only upon the local flow at the front,
it is expected to be independent of the symmetry index n. Conse-
quently, (A.15) can be used to determine the value of Fr from the
unidimensional 7,, ¢ and thence to determine the axisymmetric
Nm,1. These values are listed in Table A.1.

A.l1.1. Spreading rates

For modeling the spread of pools, the instantaneous spread
speed U, can be related to the global variables L>*” and R, by
(A.8) in the form

gL ) 12

Un:ﬁn(

where L2t /7" R}ﬁ" is the mean height of the pool and the
constant 8, is

(A.17)

Values of g, forn = 0, 1 are given in Table A.1.

Webber and Brighton [4,5] utilize a generalized spreading
model based upon dU /d¢, which for oil spills on water assumes
the form, forn =1,

v 4s -1\ [gL?
o= () (%)

where s is a shape parameter. Using (A.7), (A.8), and (A.17) the
generalization of this is

dU, (20 4+t (g L2
dr 3+ n)? RZtn

(A.18)

14+n ) g/L2+n
= —( e ﬂn> < R (A.19)
and for which the shape parameter s,, is
1 2
sp=1+ % (A.20)

The values of s;, are shown in Table A.1. Both (A.16) and (A.19)
integrate to the spreading law (A.7) when B, and s, have the
values of (A.17) and (A.20).
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Table A.1
Inertial-gravity spread parameters

n m Fr B K}

0 1.57 1.16 1.31 1.21
1 1.26 1.16 1.41 1.50
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